SIX ARITHMETIC-LIKE OPERATIONS ON LANGDAGES

LILA SÂNTEAN

Operations on languages are intensively studied in formal language theory. For example, there are representations of some families of langunges starting from simpler languages and using switable operations, tinding of connterexamples often uses operations on languages, the theory of abstract familiex of languages (AFL) st udies just operations, many operations appear in formal language theory applications [1], and so on,

The existing operations can be roughty clustered in three classes : set operations (unfon, intersection, complementation), algebraic operations (homomorphism, substitution) and purely language theoretical operations (Kleene closure, shuffle). Within this frame, it is obvious to ask for language operations corresponding to the arithmetic operations on numbers : snm, product, power, factorial, square root, and so on. Six such operations will be defined and investigated in the following, namely the compact subtraction, the literal subtraction, the geseralized subtraction, the multiplication, the power, and the factorial.

The aim of this paper is to examine the closure of an mbstract family of languages (when positive results are true) or directly of families in Chomsky hierarchy (when negative results hold) under these operations.

Generally, the results are the expected ones, in the sense that the family of context-sensitive languages is not elosed under erasing operations, whereas for the families of context-free and regolar languages, the situation is just the opposite.

1. Compaet subtraction

For a vocabulary F, we denote by $1^{* *}$ the free monoid generated by V under the concatenation operation; the null element of V is λ and $|x|$ denotes the length of the string $x \in T^{*}$. The four families in Chomsky hierarehy are denoted by $\mathscr{L}_{i, \mathrm{i}} \mathrm{i}=0,1,2,3$ ($\mathscr{X}_{\text {un }}$ denotes the family of linear languages). For other notation and terminologies in formal language theory, the reader is referred to [2].

Definition 1.1. Let L_{1}, L_{2} be languages on $V^{* *}$. We define the compaet subtraction of L_{1} and L_{2} by :

$$
\begin{gathered}
L_{1} \ominus L_{2}=\bigcup_{\substack{x \in L_{1} \\
1 \in L_{2}}}(w \ominus y) \text {, where } \\
x \Theta y=\left\{z \in V^{*} / z=x_{1} x_{2}, t=x_{1} y x_{3}\right\} .
\end{gathered}
$$

Compact subtraction is a generalization of right or left quotient : instead of extracting the word y from the left or right extremity of x, we extract it from an arbitrary place in x.

[^0]Theorem 1.1. \mathscr{L}_{1} is not closed under compact subtraction.
Proof. If L_{1}, L_{2} are two languages on V^{*}, we notice that $\{c\} L_{2} \ominus\{c\} I_{2}=I_{2} I_{1}$, where c is a symbol which doesn't belong to V.

As the family \mathscr{S}_{1} is not closed under left quotient with regular languages, it follows that it its not closed under operation θ, either.

Theorem 1.2. If L_{1} and L_{2} are languages on V^{*}, I_{11} a regular one, then there is a gsm g (with erasing) so that $L_{1} \ominus L_{2}=g\left(L_{1}\right)$.

Proof. Let $A=\left(K, V, y_{0}, F, P\right)$ be a finite automaton that recognizes L_{2}. We construct the gsm:

$$
\begin{gathered}
g=\left(V, V, K \cup\left\{s_{0}^{\prime}, s_{j}\right\}, s_{0}^{\prime},\left\{s_{j}\right\}, P^{\prime}\right), \text { where } \\
P^{\prime}=\left\{s_{0}^{\prime} n \rightarrow a s_{0}^{\prime} / a \in V\right\} \cup P \cup\left\{s_{0}^{\prime} a \rightarrow s / s_{0}^{\prime} A \rightarrow s \in P\right\} \\
\cup\left\{s a \rightarrow s_{j} / s a \rightarrow s^{\prime} \in P, s^{\prime} \in F\right\} \cup\left\{s_{j} a \rightarrow a s_{r} / a \in V\right\} \\
\cup\left\{s_{0}^{\prime} A \rightarrow s_{j} / s_{0} a \rightarrow s \in P, s \in F\right\} \cup\left\{s_{0}^{\prime} A \rightarrow a x_{j} / a \in V, \lambda \in L_{2}\right\}
\end{gathered}
$$

Clearly, $g\left(I_{1}\right)=L_{1} \ominus L_{1}$ and thus the proof is fimished.
Corollary. $\mathscr{L}_{2}, \mathscr{L}_{\text {tin }}, \mathscr{L}_{3}$ are closed under compact subtraction with regulat lengunges.

Open problems : The closure of the fanilies \mathscr{I}_{0} and \mathscr{I}_{1+n} under compact subtraction.

Probably, these families ate not closed under compact subtraction, or, if they are, this result cannot be proved in a constructive way, because we have:

Theorem 1.3. There is no algorithm to decide whether $L_{1} \ominus L_{2}$ is empty or not, for L_{1}, L_{2} arbitrary in $\mathscr{L}_{\text {in }}$.

Proof. Let tis consider the linear languages
 $L_{2}=\left\{d a^{q^{4}} b \ldots, b a^{i_{2}} b a^{i_{4}} b e y_{1}, y_{4} \ldots y v_{k} d / k \geqslant 1, i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n\}\right\}$.

The statement : $L_{1} \ominus L_{2} \neq \varnothing$ iff there is a sequence of indexes $i_{1}, i_{g}, \ldots, i_{k} \in\{1,2, \ldots, n\}$ so that $x_{i_{1}} i_{i_{2}} \ldots x_{i_{k}}=y_{i_{1} y_{i_{2}} \ldots y_{i_{k}}}$, is obvious.

Therefore, we have $L_{1} \ominus L_{\mathcal{Z}} \neq \emptyset$ iff the POST correspondence problem has a solution, which is undecidable.

Concluding, we cannot construct in an algorithmic way a context-free grammar G so that $L(G)=L_{1} \ominus L_{0}, L_{7}, L_{2} \in \mathscr{I}_{10}$, as, otherwise we can decide if $L_{1} \ominus I_{2}=\boldsymbol{\sigma}$ (the problem if $L(G)$ is empty, finite or infinite is decidable for context-free grammars)-contradietion.

2. Literal subtraction

Definition 2.1. Let L_{1}, L_{2} be languages on I^{*}. We define the literal subtraction, $L_{1} \cdots L_{2}$, by

$$
L_{1}-L_{2}=\bigcup_{\substack{s \in L_{1} \\ y \in L_{1}}}(x-y) \text {, where }
$$

$\cdots-y=\left\{x_{1} x_{2} \ldots x_{k} / x_{1} b_{1} x_{2} b_{2} \ldots b_{d-1} x_{k}=x_{1} b_{1} b_{2} \ldots b_{k-1}=y, k \geqslant 2\right.$,
$b_{i} \in V, i \in\{1,2, \ldots, k-1\}, x_{l} \in V^{*}, j \in\{1,2, \ldots, k\}$ (if the letters of y can also be found in w, in the same order, then the literalsubtraction erases them from a, without taking into tecount their places; else we cannot subtract y from x).

Theorem 2.1. If L_{2} is a regular language, then the literal subtraction $L_{1}-L_{2}$ can be attained by a g8m (with erasing).

Proof. Let $A=\left(K, V, \otimes_{0}, F, P\right)$ be in finite automaton that recognizes the language L_{2} (therefore P contains rules of the form $s a \rightarrow s^{\prime}$, s, $\left.s^{\prime} \in K, a \in V\right)$.

We construct the g sm $g=\left(V, T, K, s_{0}, F, P^{\prime}\right)$ with K, V, s_{0}, F according to A and $P^{\prime}=P \cup\{s a \rightarrow a s / s \in K, a \in V\}$.

One ean easily prove that $I_{1}-+L_{2}=g\left(I_{1}\right)$ (the rates of P erase the symbols which come from y, in the correct order, and those of the form $s a \rightarrow a s$ cross the symbols that will remain in $x \rightarrow y$).

Corollery. $\mathscr{S}_{\mathrm{a}}, \mathscr{L}_{\text {unin }}, \mathscr{S}_{2}$ are closed under literat smbtraction toith regular languages.

Theorem 2.2. \mathscr{I}_{1} is not closed under literat subtraction with regular languages.

Proof. We define the $g s m, g=\left(V, V\right.$ y $\left.V^{\prime}, K, s_{0}, F, P^{\prime}\right)$, where $K=\left\{s_{0}, s\right\}, F=\{s\}, V^{\prime}=\left\{a^{\prime} \mid a \in V\right\}, P^{\prime}=\left\{v_{0} a \rightarrow a s_{0} / a \in V\right\} \cup\left\{s_{0} a \rightarrow\right.$ $\left.\rightarrow a^{\prime} s / a \in V\right\} \cup\left\{s a \rightarrow a^{\prime} s / a \in V\right\}$.

It $L \subseteq 1^{\text {T }}$, we have the relation:
$g(L)=\left\{w_{1} w_{2}^{\prime} / w_{1} w_{2} \in L\right\}$ (the gam g marks the symbols that are situated on the right side of the strings of L).

We also have the relation:
$L_{1} / L_{2}=\left[g\left(L_{1}\right)-\cdot h\left(L_{2}\right)\right] \cap T^{*}$, where $I_{1}, L_{2} \subseteq V^{*}$ and h is a homomorphism, $h: 1^{\prime} \rightarrow V^{\prime}, h(a)=a^{\prime}$.

As X_{1} is closed under intersection but it is not elosed under right (and left) quotient with regular languages, it follows that \mathscr{L}_{1} is not closed under operation -.

Theorem 2.3. \mathscr{L}_{2} and $\mathscr{X}_{\text {in }}$ are not closed under literal subtraction with linear languages.

Proof. Let L_{1}, L_{z} be the linear languages

$$
\begin{gathered}
I_{1}=\left\{a^{n}(b c)^{v}(d f)^{m / n} / n, m \geqslant 1\right\}, \\
L_{2}=\left\{c^{n} d^{n} / n \geqslant 1\right\}
\end{gathered}
$$

One can casily see that :

$$
\left[L_{1}-L_{\mathrm{a}}\right] \cap\{a\}^{*}(b\}^{*}\{f\}^{*}=\left\{a^{n} b^{n} f^{n}|n| \geqslant 1\right\} .
$$

$\mathrm{A}_{5} \mathscr{\mathscr { S }}_{3}$ and $\mathscr{L}_{\text {tin }}$ are closed under intersection by regular sets but $\left\{a^{n} b^{*} f^{n} / n \geqslant 1\right\}$ is not a context-free language, it follows that these families are not closed under literal subtraction.

In fact, we have obtained a stronger result, namely that there wre linear languages L_{1}, L_{y} such that $L_{1}-L_{2}$ is not a context-free langunge.

3. Generalized subtraction

Definition 3.1. Let L_{1}, L_{2} be languages on V^{*}. We define the generalised subtraction $L_{1}+L_{2}$ by :

$$
L_{1}+L_{2}=\bigcup_{\substack{x L_{1} \\ y \in L_{2}}}(x+y), \text { where }
$$

$x f y=\left\{x_{1} x_{2} \ldots x_{k+1} / x=x_{1} b_{1} x_{2} b_{2} \ldots x_{2} b_{2} x_{n+1}\right.$, where y is a permutation of the word $b_{1} b_{2} \ldots, b_{k}, k \geqslant 1$ \} (if the letters of y can also be found in x, then the generalized subtraction crases the letters of y from \& without taking into account their places; else we cannot subtract y from x). Notice that the generalized subtraction is a generalization of the compaet and literal subtraction.

Theorem 3.1. \mathscr{L}_{x} is not olosed under generalized subtraction. Proof. Let L_{1}, L_{2} be the regular lunguages

$$
\begin{gathered}
L_{1}=\left\{(b c)^{m}(d f)^{m} / m, p \geqslant 1\right\}, \\
L_{2}=\left\{(c d)^{n} / n \geqslant 0\right\} .
\end{gathered}
$$

One can prove that

$$
\left(L_{1}+L_{\mathrm{k}}\right) \cap\{b\}^{*}\{f\}^{*}=\left\{b^{m} \int^{m} / m \geqslant 1\right\}^{\prime \prime} .
$$

As \mathscr{L}_{3} is closed under intersection by regular languages but $\left\{b^{m} f^{m} / m \geqslant\right.$ $\geqslant 1\}$ is not regular, it follows that \mathscr{L}_{3} is not closed nuder operation \nrightarrow. Theorem 3.2. $\mathscr{L}_{u \mathrm{n},}, \mathscr{L}_{s}$ are not closed under generalized subtraction with regular languages.

Proof. Let L_{1}, L_{2} be the linear languages :

$$
\begin{gathered}
L_{4}=\left\{a^{n}(b e)^{*}(d f)^{m} / n, m \geqslant 1\right\}, \\
L_{2}=\left\{(c d)^{n} / n \geqslant 1\right\} .
\end{gathered}
$$

The relation

$$
\left(L_{1}+L_{\mathrm{n}}\right) \cap\{a\}^{*}\{b\}^{*}\{f\}^{*}=\left\{a^{*} b^{n} f^{n} / n \geqslant 1\right\} \text { is obvious. }
$$

As \mathscr{L}_{2} and $\mathscr{Z}_{\text {in }}$ are closed under intersection by regular languages but $\left\{a^{n} b^{n} c^{n} / n \geqslant 1\right\}$ is not context-free, it follows that $\mathscr{P}_{3 n}$ and \mathscr{L}_{2} are not elosed under generalized subtraction with regular languages.

Theorem 3.3. \mathscr{P}_{1} is not closed under generalized subtraction with regular sets.

Proof. For each $L_{0} \in \mathscr{L}_{0}$ (hence also for $\left.L_{0} \in \mathscr{L}_{0}-\mathscr{L}_{1}, L_{0} \subseteq 1^{*}\right)$, there is $L_{1} \in \mathscr{P}_{1}, L_{1} \subseteq a^{*} b L_{0}, a, b \in V$, such that for each $a \in L_{0}$ there is a natural n such that $a^{n} b x \in L_{1}([2])$. Consider such a language $L_{1} \in \mathscr{P}_{3}$. We have

$$
L_{0}=\left(L_{1}+a^{*} b\right) \cap V^{*} .
$$

As \mathscr{S}_{1} is elosed under intersection, it follows that it connot be closed under generalized subtraction with regular sets.

4. Multiplication

Definition 4.1. Let L_{1}, L_{2} be languages on V^{*}. We define their multiplication by :
$L_{1} * L_{2}=\left\{x^{|y|} \mid x \in L_{1}, y \in L_{2}\right\}$ on condition that $\lambda^{|z|}=\lambda, \alpha \in L_{1}$ and $\beta^{\prime \lambda}=\lambda, 3 \in L_{1}$.

Theorem 4.1. \mathscr{L}_{3} is not closed under multiplication.
Proof. Let L_{1}, L_{1} be the regular languages

$$
\begin{gathered}
L_{1}=\left\{a^{*} b / n \geqslant 1\right\}, \\
L_{2}=\{a a a\} .
\end{gathered}
$$

In accordance with definition 4.1 we have
$I_{1} * I_{1}=\left\{a^{n} b a^{n} b a^{n} b / n \geqslant 1\right\}$, which is not even context-\{ree.
Corollary. The families \mathscr{L}_{2} and $\mathscr{L}_{\text {un }}$ are not closed under multiplication.

Theorem 4.2. \mathscr{L}_{1} is closed under muttiplication.
Proof. A standard (straightforward, but long) construction would prove this statement; we omit the details. For a similar proof, see theorem 5.2 , below.

5. Power

Definition 5.1. If L_{1} and L_{2} are languages on V^{*}, we define $L_{1} * L_{2}$ (L_{1} power L_{3}) by :
on condition that if $\lambda \in I_{1}$ or $\lambda \in I_{3}$, we put λ in $\left.L_{2^{*} *} * L_{1}\right\}$.
Theorem $5 . I, \mathscr{L}_{3}$ is not closed under operation**.
Proof. Let L_{1}, L_{3} be the regular languages :

$$
\begin{gathered}
L_{1}=\{a a\}, \\
L_{2}=\left\{a^{n} / n \geqslant 1\right\} .
\end{gathered}
$$

Then, $L_{1} * * L_{2}=\left\{a^{2^{n}} / n \geqslant 1\right\}$, language that is not even context-free.
Corollary. $\mathscr{L}_{2}^{2}, \mathscr{L}_{1 \text { tin }}$ are not closed under operation **.
Theorem 5.2. If $L_{1} \subseteq V^{2} V^{*}, L_{2} \subseteq V^{*}, L_{1}, L_{2} \in \mathscr{L}_{1}$, then $L_{1} *=L_{2} \in \mathscr{L}_{1}$.
Proof. Iat L_{1}, L_{2} be two languages which satisty the requested conditions, and G_{1}, G_{a} the generating grammars:

$$
\begin{aligned}
& G_{1}=\left(V_{v}^{1}, V_{T}^{1}, S_{1}, P_{1}\right) \\
& G_{2}=\left(V_{v}^{2}, V_{T}^{2}, S_{q}, P_{2}\right)+
\end{aligned}
$$

We construet the grammar $G=\left(V_{n}, V_{T}, S, P\right)$, where $V_{s}=V_{s}^{1} \cup$ $\cup V_{N}^{2} \cup V_{T}^{2} \cup\left\{S, C, E, A, C^{\prime}, C^{\prime \prime}, C^{\prime \prime \prime}, B, D, H, B^{\prime}, B^{\prime \prime}, F, I\right\}, V_{T}=V_{T}^{\prime}$ and P is constructed its follows:
P contains $P_{1} \cup P_{2}$, on condition that if P_{1} or P_{2} contain rules giving the null word, we climinate them from P, and introduce in its stead the rule $S \rightarrow \lambda$.

Moreover, we shall thd to P the rules (1) - (24), which will be explained in the sequel.

First, we gencrate $z \in I_{\text {de }}$, bordering it with $F C$ to its left, and with E to its right :
(1) $S \rightarrow F C S_{2} E$.

Because we want to obtain |z| words from I_{1}, we change every letter of \approx into S_{1}, separating them by A :
(2) $\mathrm{Ca} \rightarrow \mathrm{CS}_{1} A$,

$$
a \in V_{T}^{2}
$$

(3) $A a \rightarrow A S_{1} A$, $a \in V_{T}^{2}$
(4) $A a E \rightarrow A S_{1} E, \quad a \in V_{T}^{2}$.

Deriving on with rules from P_{1} we get \ddagger

$$
F C x_{1} A x_{2} A \ldots A x, E, \quad x_{1} \in I_{1} .
$$

Now, we try to obtain the word $x_{1}^{\alpha_{2} \mid}=y$, then $y^{\prime \cdot s^{\prime} \mid}=x_{1}^{x_{1}^{\prime \prime} x_{1}}$, and so on, till we get $x_{1}^{x_{2}|\cdots| x_{a} \mid}$.

During the lirst step, we work only with the first two words. Thus, we limit the working zone:
(5) $C \rightarrow C^{\prime} C^{\prime \prime}$.
F marks the left extremity of the whole word, C^{\prime} the left extremity of x_{1}, and $C^{\prime \prime}$ the other limits, in the following wuy: $C^{\prime \prime}$ goes to the right, crosxing only the terminals; when it meets the left extremity of x_{2}, it points this out by turning itself into $C^{\prime \prime \prime}$ and A into $B ; C^{\prime \prime \prime}$ goes to the right, and, when it mects the right extremity of x_{3}, it turns A into D, if if is not the last word, or E into H, if x_{2} is the last word, and disappears :
(6) $C^{\prime \prime} a \rightarrow a C^{\prime \prime}, \quad a \in V_{r}^{\prime}$
(7) $\mathrm{C}^{\prime \prime} \mathrm{A} \rightarrow \mathrm{BC}^{\prime \prime}$
(8) $C^{\prime \prime \prime} A \rightarrow a C^{\prime \prime \prime}, \quad a \in V_{T}^{1}$
(9) $C^{\prime \prime \prime \prime} A \rightarrow D$
(10) $C^{\prime \prime+} E \rightarrow I I$

After using these rules we get either the word

To obtain $x_{1}{ }^{\gamma_{2}}$ we have to generate a word x_{1} for every letter of x_{2} We bring a letter b to the left of B, marking it :
(11) $B b \rightarrow b^{\prime} B$,
$b \in V_{T}^{1}$.

This h^{\prime} goes to the left, adding a marked lining to every letter of α_{1}, and disappeass when attaining the extremity of x_{1} :
(12) $a b^{\prime} \rightarrow b^{\prime} a^{\prime \prime} a, \quad a, b \in V_{T}^{1}$
(13) $C^{\prime} a b^{\prime} \rightarrow C^{\prime} a^{\prime \prime} a, \quad a \in V_{T}^{1}, b \in V_{\mathrm{T}+}^{1}$

The maked symbols move to the left, in order, and when they attain C^{\prime}, cross it, loosing their marks :
(14) $b a^{\prime \prime} \rightarrow a^{\prime \prime} b$,
$a, b \in V_{T}^{1}$
(15) $\mathrm{C}^{\prime} a^{\prime \prime} \rightarrow a \mathrm{C}^{\prime}$,
$a \in V_{T}^{1}$.
After using these rules we obtain either

$$
\begin{gathered}
F a_{1} a_{2} \ldots a_{2} C^{\prime} a_{1} a_{2} \ldots a_{n} B b_{1} b_{2} \ldots b_{m} D \text { or } \\
F a_{1} a_{2} \ldots a_{n} C^{\prime} a_{1} a_{2} \ldots a_{n} B b_{1} b_{2} \ldots b_{m} H .
\end{gathered}
$$

We repeat these rules for every letter b_{r-}. When we reach the last onte, we destroy it:

$$
\begin{equation*}
B b D \rightarrow B^{\prime} A, \quad b \in V_{t}^{\prime} . \tag{16}
\end{equation*}
$$

Atterwards, if x_{3} is not the last word of L_{1} - in the word we are tulking about -, to use the set of rules (5) - (16) again, we must bring the current word to the initial form:
(17) $a B^{\prime} \rightarrow B^{\prime} a, \quad a \in V_{T}^{\prime}$
(18) $C^{\prime} B^{\prime} \rightarrow B^{\prime \prime}$.

We continue the moving of $B^{\prime \prime}$ to the left, until it teaches F :
(19) $a B^{\prime \prime} \rightarrow B^{\prime \prime} a, \quad a \in V_{T}^{\prime}$
(20) $F B^{\prime \prime} \rightarrow F C$.

Now, the curtent word is:

$$
F O x_{1}^{\left|r_{0}\right|} A x_{x} A \ldots A x_{x} E,
$$

and we can resume the set of rules, beginning with (5).
If x_{2} is the last occurrence of a word of L_{1} in the current word, then the last b disappeats, and P and H turn into I, which moves to the left, erasing all monterminals :
(21) $\mathrm{BbH} \rightarrow I, \quad b \in V_{T}^{1}$
(22) aI $\rightarrow I a, \quad a \in V_{T}^{3}$
(23) $\mathrm{C}^{\prime} I \rightarrow I$
(24) $F I \rightarrow \lambda$

From the ubove explanations, it easily results that $L(G)=L_{1} * * L_{1}$.
To show that $L(G) \in \mathscr{L}_{1}$ we shall use the work-space theorem ([2]).
 tion $D+w_{0} \Rightarrow w_{1} \Rightarrow \ldots \Rightarrow w_{n}=2$.

The only places $w \Rightarrow w^{\prime}$ whare we can have $w^{\prime} \mid<w$ are the places where we apply:

- rule (9), (16) or (18) ; each of them decreases w with one letter and can be applied $|y|-1$ times in D.
- rule (10), (23), or (24); each of them decteases 20 with one letter and can be applied once in D.
- rule (21) which decreases w with two letters and can be applied once in D.

Consequently, we conclude that the greatest length of a word in D cannot be larger than $|z|+3(|y|-1)+2+2+1$.

For $k=4$, and taking into account that the words from L_{1} lave the length greater or equal to two, we have :

$$
\begin{gathered}
W S(z, G) \leqslant \min _{D} W S(D, G) \leqslant W S(D, G)=\max _{1 \leqslant i<n}\left|w_{i}\right|= \\
=|\xi|+3|y|+1+1 \leqslant 2|\xi|+k \leqslant k\left|x_{1}\right|\left|x_{2}\right| \ldots|x, y||=k| z \mid+
\end{gathered}
$$

According to the work-space theorem, $I(G)=L_{1} *+I_{2} \in \mathscr{L}_{1}$.
Open problem. Is \mathscr{S}_{1} closed under operation $* *$?

6. Factorial

Definition 6.1. Let L he a language on $V^{\text {* }}$. We define L factorial by:

$$
L:=\{x!/ x \in L\} \text { where, if } x=a_{1} a_{2} \ldots a_{n} \text {, then }
$$

$x!=a_{1} a_{1} a_{2} a_{1} a_{2} a_{\mathbb{1}} \ldots a_{1} a_{2} a_{3} \ldots a_{n}$, on condition that $\lambda!=\lambda$ and $a!=a$, $a \in V$.

Theorem 6.1. \mathscr{I}_{3} is not closed under operation f :
Proof. Let L be the regular language $L=\left\{a^{m} / n \geqslant 1\right\}$.
In accordance to definition $6.1, L!=\left\{a^{n(n+1) / 2} / n \geqslant 1\right\}$, langnage which is not even context-free.

Corollary. $\mathscr{S}_{2}, \mathscr{L}_{1 /}$ are not closed under operation!
Theorem 6.2. \mathscr{X}_{1} is elosed under operationl.
Proof, Let L be a language in \mathscr{L}_{1}, and $G=\left(V_{N}, V_{T}, S, P\right)$ the generating grammar.

Let G^{\prime} be a grammar, $G^{\prime}=\left(V_{N}^{\prime}, V_{T}^{\prime}, S^{\prime}, P^{\prime}\right)$, where $V_{N}^{\prime}=\left\{S^{\prime}, X_{0}\right.$, $\left.X_{1}, X_{2}\right\} \cup V_{N}, V_{T}^{\prime}=V_{T} \cup\{c\}$ and \boldsymbol{P}^{\prime} is constructed as follows :
P^{\prime} contains P. We shall also introduce into P^{\prime} the rules $(1)-(7)$ constructed in the following way :

First, we produce a word from L :
(1) $S^{\prime} \rightarrow X_{0} X_{1} S X_{2}$.

A derivation will continue only with rules from P, until we obtain $X_{0} X_{1} x X_{2}, x \in L$. Assuming that $w=a_{1} a \ldots a_{\mathrm{w}}$, we'll try to produce a lining of the first $n-1$ letters. If on the right side of x_{1} there are at least two letters, the first one passes on the left side of X_{1} and produces a marked lining :
2) $X_{1} a b \rightarrow a^{\prime} a X_{1} b, \quad a, b \in V_{T}$

When we attain the last letter of s, which must not be donbled, we pass it to the right side of X_{2}, and point this out by marking X_{1} :
(3) $X_{1} a X_{2} \rightarrow X_{1}^{\prime} X_{2} a, \quad a \in V_{T}$.

All the unmarked symbols pass, in order, to the right side of X_{E} :
(4) $a d \rightarrow d a, \quad a \in V_{T}, d \in\left\{a^{\prime} / a \in V_{T}\right\} \cup\left\{X_{1}^{\prime}, X_{2}\right\}$.

In this moment, on the right side of $X_{1} X_{2}$ we have the initial word, and on the left side, the firsk $n-1$ letters, marked.

We have to repeat the preceding operations and, with this end in view, we move X_{1}^{\prime} to the left, until it reaches the extremity, when it turns back into X_{1}. In this way, X_{i}^{\prime} erases all the marks, so that, when it reaches the left extremity and becomes X_{1}, we can repeat our method for the $n-1$ letters between $X_{0} X_{1}$ and X_{2} :
(5) $a^{\prime} X_{1}^{\prime} \rightarrow X_{i}^{\prime} a, \quad a \in V_{r}$
(6) $X_{0} X_{1}^{\prime} \rightarrow X_{0} X_{1}$.

Finally, when we have no more letters between $X_{0} X_{1}$ and X_{2} :
(7) $X_{0} X_{1} X_{2} \rightarrow c o c$.

One can easily see, from the above explanations, that $L\left(G^{\prime}\right)=\{$ cce $\} L$!. $L\left(G^{\prime}\right)$ is, clearly context-sensitive.

Let h be the homomorphism $h:\left(V_{T} \cup\{c\}\right)^{*} \rightarrow V_{T}^{*}$, defined by

$$
h(a)=a, a \in V_{T}, h(c)=\lambda
$$

We have that $h\left(L\left(G^{\prime}\right)\right)=L$:.
\mathscr{L}_{1} is closed under restrictedh omomorphisms, so $h\left(L\left(G^{\prime}\right)\right) \in \mathscr{L}_{1}$ therefore $L: \in \mathscr{L}_{1}$. Thus, the proof is complete.

NOTE: I wish to express my gratitude to dr. Gheorghe Păun for his suggestions and remarks.

REFEAENCES

1. Gh. Paun, Mecanisme generative ale proceselor roonomice (Generative Mechanisms far Fconomic Procenses), Bucureştl, Editura Tehnicâ, 1980,
2. A. Saloman, Format Languages, New York, London, Academic Press, 1973.

[^0]: R.R.L. - C.L.T.A., XXV, 1, p. 65-7.1, Bucarest. 1088

